Supraorbital transciliar approach for posterior communicating aneurysm. 
3D surgical video

Matías Baldoncini a,b,⁎, Maximiliano Nuñez c, Rodolfo Recalde d, Amparo Saenz e, Juan F. Villalonga e,f, Álvaro Campero e,f

a Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, School of Medicine, University of Buenos Aires, Argentina
b Department of Neurosurgery, San Fernando Hospital, Buenos Aires, Argentina
c Department of Neurosurgery, El Cruce Hospital, Buenos Aires, Argentina
d Departmento de Neurocirugía, Hospita de Clinicas Jose de San Martin, Buenos Aires, Argentina
e LINT, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
f Department of Neurological Surgery, Hospital Padilla, Tucumán, Argentina

ARTICLE INFO

Keywords:
Keyhole approaches
Microsurgery
Transciliar approach
Aneurysm
Clipping

ABSTRACT

At the beginning of the 20th century, craniotomies for intracranial aneurysms were large due to a deficit in the illumination of the surgical field, lack of optical magnification, and inadequate surgical instruments [1,2]. Even after the microscope was introduced, the size of the craniotomies did not diminish significantly. It was only after 1981 when Sanchez-Vazquez first introduced the supraorbital transciliar approach that the craniotomies became smaller [3]. This approach allows access to the anterior skull base, the soral-para sellar region, and to the territory of the anterior circulation. Later, Pernecký1 was responsible for perfecting this surgical technique for vascular surgery. In a way, this approach offers multiples advantages like a smaller incision, no need for orbideal osteotomies, fewer brain exposure, less postoperative periorbital inflammation, and excellent cosmetic results [4,5].

Our work aims to present a 3D surgical video that illustrates the advantages of using a supraorbital transciliar approach for clipping a posterior communicating artery aneurysm.

The patient consented to the use of the photos and surgical video for research purposes.

1. Submission statement

The contents of this Video have not been copyrighted or published previously.

2. Funding source

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

3. Financial disclosure

No.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.inat.2020.100885.
References


