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Abstract
The development of techniques for the acquisition of high-resolution 3D images, such as computed tomography and mag-
netic resonance imaging, has opened new avenues to the study of complex morphologies. Detailed descriptions of internal 
and external traits can be now obtained, allowing the intensive sampling of surface points. In this paper, we introduce a 
morphometric and statistical framework, grounded on Procrustes and Procrustes-like techniques as well as standard spatial 
statistics, to explicitly describe and incorporate the spatial pattern of these surface points into the analyses. We exemplified 
this approach by analyzing ontogenetic changes in a sample of human brain endocasts and inter-specific differences between 
primate skulls. An intensive sampling of points on 3D surfaces was performed by automatic techniques and the morphometric 
variation among specimens was measured by the residuals obtained after the alignment of points. Our results showed that 
shape changes in both examples are spatially structured. Different results were attained by using methods that incorporate 
or not the spatial structure in the evaluation of the effect of specific biological factors on shape variation. Particularly, these 
analyses indicated that the effect of biological factors acting at local scales can be confounded with more systemic factors 
(by example, the effect of the diet on the facial skeleton) if the spatial structure is not taken into account. Overall, our results 
suggest that the intensive description of shape differences among structures using densely sampled points on 3D surfaces 
combined with spatial statistical methods can be used to explore problems not widely addressed in morphological studies.
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The development of techniques for the acquisition of high-
resolution 3D images, such as CT scans and MRI, has 
opened new avenues to the study of complex morpholo-
gies. Detailed descriptions of internal and external traits 
can be now obtained and visualized. However, the analytic 
tools for comparing and assessing morphological variation 
within a geometric morphometric framework have lagged 
behind, being mainly based on the description of discrete 

morphological traits by using a reduced number of ana-
tomical points (landmarks; Klingenberg 2011; Adams et al. 
2013). More recently, different methods have been developed 
for obtaining a better coverage of the structures by means 
of the semi-automatic or automatic placement of points on 
surfaces and curves, called semilandmarks and pseudolan-
dmarks (Gunz et al. 2005; Gunz and Mitteroecker 2013; 
Boyer et al. 2015; Pomidor et al. 2016; Gao et al. 2018). 
These new methods allow the collection of an unprecedented 
volume of morphometric data, which constitute a promis-
ing alternative to assess the patterns of shape variation and 
covariation in evolutionary and developmental studies.

The intensive sampling of points not only provides a 
better description of morphological structures (Adams 
et al. 2013; Gunz and Mitteroecker 2013) but also allows 
the exploration of novel problems that cannot be ade-
quately addressed by using sparsely distributed points. 
In this sense, the new methods for obtaining surface and 
curve points are suitable for studying patterns of variation 
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and covariation at different spatial scales within anatomi-
cal structures. One of the most remarkable aspects that 
can be explored with these methods is the spatial pattern 
of morphometric data (Mitteroecker 2009; Márquez et al. 
2012). Spatially neighbor points will likely have similar 
properties than more distant ones—i.e., spatial autocor-
relation (Rohlf 1990)—as a result of the influence of 
factors with localized effects on subsets of close points, 
such as locally expressed molecules or local tissue inter-
actions (Hallgrímsson and Lieberman 2008; Mitteroecker 
and Bookstein 2008; Mitteroecker 2009). The same as in 
ecological and biogeographical studies (Legendre and 
Legendre 1998; Diniz-Filho et al. 2009), the presence of 
spatial autocorrelation in morphometric data has important 
implications in the statistical methods used to describe 
morphological variation and assess its underlying factors. 
For example, when response variables (e.g. shape data) 
are modeled as a function of explanatory or independ-
ent variables (e.g. size), the spatial structure—or other 
dependence structures—in the data perturbs significance 
tests as well as the variance of parameter estimates of the 
standard (non-spatial) statistical techniques, which can 
led to a misunderstanding of the relationship between the 
variables of interest (Legendre and Legendre 1998; Rohlf 
2006; Revell 2009). To date, however, most morphometric 
and statistical approaches do not evaluate neither take into 
account the spatial autocorrelation of the shape variables.

In this paper, we introduce a morphometric and statisti-
cal framework, grounded on Procrustes and Procrustes-like 
techniques as well as standard spatial statistics, to explicitly 
describe and incorporate the spatial pattern of morphomet-
ric data into the analyses. This approach uses densely sam-
pled points on 3D surfaces to describe the morphological 
structures of interest and estimates the variation between 
specimens using point to point residuals of the entire sur-
faces after Procrustes or Procrustes-like alignments (Gunz 
et al. 2005; Boyer et al. 2015; Pomidor et al. 2016). The 
resulting shape data (i.e. Procrustes residuals or pseudolan-
dmark residuals) are then analyzed using spatial statistical 
techniques (Legendre and Legendre 1998; Fortin and Dale 
2005). Particularly, interpolation maps and the Moran’s I 
correlogram are used to explore the spatial pattern of the 
residuals (Sokal and Oden 1978; Barbujani 2000; Diniz-
Filho et al. 2009). Then, statistical techniques that take into 
account the spatial autocorrelation in the data are applied 
to evaluate the influence of independent variables on shape 
variation. This approach allows us both to describe patterns 
of spatial structure in morphometric variables and to test 
the relationship between these variables and biological fac-
tors hypothesized to account for phenotypic variation. In the 
following sections we describe how the approach proposed 
here can be applied in the analysis of semilandmarks and 
pseudolandmarks; and then provide examples based on 3D 

coordinates from skulls of two platyrrhine species and an 
ontogenetic sample of human brain endocasts.

Spatial Analysis in Geometric Morphometric

Acquisition of Surface Points and Morphometric 
Variables

Intensive sampling of points on 3D surfaces can be obtained 
by either manual and semi-automatic (Gunz and Mitteroe-
cker 2013) or automatic techniques (Boyer et al. 2015; Pomi-
dor et al. 2016). Once these points have been collected, the 
morphometric variation among specimens can be measured 
by the residuals obtained after the alignment of points to 
remove differences in position, orientation and—if needed—
scale between configurations. These points are called pseu-
dolandmarks or semilandmarks depending on the algorithm 
of alignment used.

Computation of Residuals from Pseudolandmarks

Pseudolandmarks are coordinates of points obtained by auto-
matic procedures of sampling from 3D meshes (Boyer et al. 
2015; Pomidor et al. 2016). The 3D meshes are aligned by 
using different implementations of the iterative closest point 
(ICP; Besl and McKay 1992) family of algorithms after an 
initial alignment based on the principal axis of variation of 
the surfaces. The correspondence between points is estab-
lished by associating each point on one surface with its near-
est neighbor on another surface. The best alignment is then 
obtained by minimizing the sum of distances between near-
est neighbor points. This type of alignment has been recently 
implemented in two software applications, auto3dgm and 
GPSA (Boyer et al. 2015; Pomidor et al. 2016). Alterna-
tively, the alignment can be obtained by first minimizing 
the Procrustes distances of a subset of landmarks manually 
digitized, and then using the Procrustes parameters obtained 
for aligning the vertices of the entire surface, such as in 
the algorithms implemented in programs for 3D analyses as 
Meshlab (meshlab.sourceforge.net). Finally, after the align-
ment, the residuals are estimated as the Euclidean distance 
between each point and its nearest neighbor. The residuals 
between surface–vertices (Gunz et al. 2012) are then used to 
quantify the morphological differences between specimens.

Computation of Residuals from Semilandmarks

Semilandmarks are  points on homologous surfaces or 
curves obtained by manual or semi-automatic techniques, gen-
erally projecting surface points of a reference on a target sur-
face (Gunz and Mitteroecker 2013). A generalized Procrustes 
superimposition, usually based on the least squares criterion, 
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is applied on these points. This procedure involves centering 
the coordinates at the origin, scaling the configurations to 1 by 
dividing the coordinates by the original centroid size of each 
specimen, and rotating the configurations, usually until the 
sum of squared distances among configurations is minimized 
(Rohlf and Slice 1990). The coordinates of points on surfaces 
are further slid in order to minimize the variance tangential to 
the surfaces or the bending energy (Bookstein 1997; Gunz and 
Mitteroecker 2013). Finally, the Procrustes residuals, defined as 
the Euclidean distance between corresponding semilandmarks, 
can be obtained to describe shape differences between speci-
mens (Gower 1971; Gunz et al. 2012).

Visualization and Analysis of the Spatial Pattern 
in Shape Residuals

The residuals that measure differences between specimens have 
associated a spatial location, which is given by the x, y, z coordi-
nates of each semilandmark or pseudolandmark. Consequently, 
the spatial structure of these residuals can be easily visualized 
by means of interpolation maps using algorithms such as the 
inverse of the distance, kriging and thin-plate spline, among oth-
ers (Márquez et al. 2012; Pomidor et al. 2016). Among the avail-
able algorithms, the inverse distance weighting approach, which 
is frequently used in spatial statistics to generate interpolations 
based on the observations available from neighboring areas, 
it is especially suitable for morphological studies (Legendre 
1993; Legendre and Legendre 1998). This algorithm estimates 
the unknown values assigning the weighted mean of the known 
observations in the neighboring area; y unknown = ∑wi yi, where 
yi is a known value and weight wi is the inverse of the Euclidean 
distance between this value (e.g., semilandmark or pseudoland-
mark residuals) and the unknown observation. When the inverse 
distance weighting interpolation is applied to morphometric 
data, it is assumed that the interpolated values will be similar to 
the known values of a given anatomical region.

The spatial pattern of the differences between configu-
rations of points can be further explored measuring the 
autocorrelation in shape residuals. Particularly, the pattern 
of spatial variation in the residual values can be efficiently 
explored using spatial correlograms or alternative techniques 
such as variograms (Legendre and Legendre 1998). In spa-
tial statistics, the more frequently used technique measures 
the magnitude of spatial autocorrelation by the Moran’s I 
autocorrelation coefficient:

where n is the number of spatial locations, yi and yj are the 
values of the residual measured in the spatial locations i and 
j, y′ is the mean y, and wij is an element of a W matrix. In the 
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W matrix the elements are equal to 1 if the pair i, j of spatial 
locations are within the class interval of a given distance 
or equal to 0 if the pair of locations are in different interval 
class. S is the number of cells in the W matrix. For morpho-
metric data, the Moran’s I coefficients can be plotted against 
the Euclidean distances between spatial locations or points 
in one surface used as reference, generating a spatial correlo-
gram (Sokal and Oden 1978; Legendre and Legendre 1998).

An alternative to explore the spatial pattern of variation in 
the shape residuals is the use of non-parametric and iterative 
algorithms as the spatial K-means clustering, which estimates 
k different clusters that minimize the total error sum of squares 
in the residuals generating groups with the greatest distinction. 
This analysis can be run by taking into account or not the spa-
tial localization of the residuals (Rangel et al. 2010).

Spatial Statistical Methods

The relationship between the pattern of variation in the shape 
residuals and independent variables can be explored by using 
statistical methods that incorporate the spatial localization of 
the shape residuals in the model. Several methods have been 
proposed to accomplish this, such as trend surface analysis, 
spatial eigenvector mapping and autoregressive method. The 
trend surface analysis is modeled as:

where SR is the shape residual matrix; X represents a matrix 
containing one or several independent variables; B is the 
matrix of partial regression coefficients; G = LSL, with L 
being a matrix with the localization of shape residuals and 
SL the slopes of these localizations; and e is the error term 
(Legendre and Legendre 1998; Perez et al. 2010b). By using 
this approach we can explore changes in shape residuals at 
different spatial scales, similarly to the Factor analysis over 
a bending energy-partial warps variance matrix recently pro-
posed for morphometric data (Bookstein 2017).

Other methods more frequently used, such as the gener-
alized least squares (Dormann et al. 2007; Diniz-Filho et al. 
2009; Perez et al. 2010a), take into account the spatial auto-
correlation in the shape residuals by modeling the error term: 

The standard regression model employed in morphometric 
studies assumes that the covariance matrix (C) for the e term 
of the shape variables or shape residuals can be well described 
by C = δ2I, where δ2 is the variance of the residuals, and I is 
the identity matrix, with 1 in the diagonal and 0 in the off-
diagonal terms:

SR = XB + G + e,

SR = XB + e.

I =
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1 0 0

0 1 0

0 0 1
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Several local factors can generate non-independent neighbor 
shape residuals, violating the assumption modeled by the I 
matrix. Generalized least squares can account for this non-
independence using a C matrix for the e term, which con-
tains the resulting values from modeling the spatial structure 
of the shape residuals in the off-diagonal terms. For exam-
ple, we can set the matrix C = δ2W, where the zero values 
in the I matrix are replaced by wij, the inverse function of 
Euclidean distances (dij) between the spatial locations of all 
pairwise shape residuals, weighted by a factor � that controls 
the decay curve:

Alternative C matrices have been proposed in spatial 
analyses to model the non-independence of the residuals, 
such as simultaneous spatial autoregressive, conditional 
spatial autoregressive or moving average (Dormann et al. 
2007; Diniz-Filho et al. 2009; Perez et al. 2010b). The sig-
nificance of the regression model can be then assessed by 
the F-statistic.

The spatial analyses performed in the following examples 
were performed in SAM v4.0 (Rangel et al. 2010). There 
are also several R packages (e.g., rspatial, gstat, spdep) that 
perform the spatial analyses shown here (R Development 
Team 2019).

Examples

Example 1

We analyzed 3D meshes of the skull of two species of pri-
mates, one specimen of Alouatta and one specimen of Saim-
iri, as an example of the spatial pattern of shape variation 
at an inter-specific level. These 3D meshes were generated 
from CT-scans using Slicer 4 (www.slice​r.org), saved in PLY 
file format and edited in MeshLab (meshlab.sourceforge.
net), where the vertices were subsampled in a uniform way 
to ca. 30,000 points using the Mesh Element Subsampling 
filter. The CT-scans were obtained from the Digital Mor-
phology Museum (DMM, KUPRI, Primate Research Insti-
tute, Kyoto University, Japan) repository.

The 3D surfaces extracted from the CT-scans were 
aligned using an approach based on reference landmarks 
implemented in MeshLab. The following landmarks were 
used with this aim: nasion, sub-spinale, prostion, bregma, 
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lambda, opistion, basion, basioccipital, palatino, ectocon-
chion left and right, zigomaxillare left and right, asterion left 
and right, and porion left and right. The square difference 
between these landmarks was minimized and the Saimiri 
mesh was aligned to the Alouatta one. After the alignment of 
the surfaces, the shape variation between the two specimens 
was estimated by the residuals of the pseudolandmarks or 
homologized points, i.e. the 30,000 vertices. We calculated 
these residuals as the Euclidean distances between homolo-
gized points after the alignment procedure. These residuals 
represent the distance between vertices in one mesh to the 
closest points in the second mesh and were obtained by the 
Hausdorff distance implemented in MeshLab (Cignoni et al. 
1998). In sum, by using this procedure we obtained the 3D 
coordinates of points used to describe the primate skulls and 
the Euclidean distances among the closest points between 
the meshes that represent the shape differences between 
specimens (i.e., shape residuals).

The spatial pattern of the residuals was depicted by 
color-maps interpolating the values of the residuals on one 
of the meshes. In this example, the interpolation map was 
displayed on the surface of the Alouatta skull (Fig. 1). As is 
shown in the colormap, the vault, anterior maxillary bone 
and zygomatic arch have large residual values, while the 
cranial base and the areas surrounding the orbitals have the 
smallest residuals (Fig. 1). This suggests that the morpho-
metric differences between Alouatta and Saimiri are local-
ized in specific areas of the skull that vary in a coordinate 
way. At this point, we applied the Mesh Element Subsam-
pling filter of MeshLab to reduce the number of vertices to 
2500 for subsequent analyses. The spatial correlogram of 
the residuals is characterized by positive autocorrelations at 
short distances coupled with a negative autocorrelation at 
large distances (Fig. 2a), corroborating the visual interpre-
tation in the colormap. For the first distance class, the scat-
terplot of the residual values at each pseudolandmark against 
the average residuals of their neighbors shows a strong linear 
relationship (Fig. 2b). 

The K means clustering performed on the residuals 
grouped the pseudolandmarks following a pattern similar 
to the one depicted by the interpolation map (Fig. 3). We 
then explored the fit of the shape residuals considering two 
previously hypothesized components or modules, the neuro-
cranium and the facial skeleton, and taking into account the 
spatial structure of the shape variables. First, we performed a 
generalized least squares analysis with the shape residuals as 
dependent variables and the module as an explanatory factor 
and found that only 1.2% of the variance in the residuals was 
explained by this factor. Then, when the spatial structure 
was incorporated into the model, the percentage of shape 
variation explained by the predictor variable and the space 
increases up to 49.9%. These results indicate that a large 
amount of the shape residual variation between species is not 

http://www.slicer.org
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explained by the modules but it is associated to the spatial 
structure of shape changes between the two species.

Example 2

To exemplify the spatial structure of shape changes along the 
ontogeny we analyzed a sample of 19 human endocasts aged 
from 0 to 12 years old. The sample was obtained from the 
skull CT-scans of the Bosma collection (Shapiro and Richst-
smeier 1997). The endocasts were manually segmented in 
Slicer 4 software to obtain the 3D meshes. Then, the Mesh 
Element Subsampling filter of MeshLab was used to reduce 
the number of vertices of each mesh to 5000. The 3D meshes 
obtained by such procedure were aligned by an automatic 
alignment procedure, the Generalized Procrustes Surface 
Superimposition (GPSA; Pomidor et al. 2016). Shape vari-
ation among specimens was estimated by the residuals of 
the pseudolandmarks obtained as the Euclidean distances 
between homologized points after the GPSA (Pomidor et al. 
2016).

The interpolation map depicting the shape changes in 
the postnatal ontogeny of the brain endocasts, considering 
the youngest and oldest individual in the shape comparison, 
shows a strong spatial structure (Fig. 4). Shape changes are 
mainly located in the anterior region of the frontal lobe, the 
limit between frontal and parietal lobes, the inferior region 
of the temporal lobe and the occipital lobe. The spatial cor-
relogram of the residuals between the youngest and the old-
est specimen supports the existence of a spatial structuration 
of the shape changes between neonates and juvenile speci-
mens (Fig. 5a). Residuals at short distances display moderate 
positive correlations (Fig. 5b) while there is no autocorrela-
tion at larger distances.

For the dataset of human endocasts we explored the pat-
tern of spatial autocorrelation in allometric shape changes. 

First, for each specimen we estimated the shape residuals 
between each specimen configuration and the mean shape. 
Then, the eigenvector of the first principal component 
obtained from the matrix of residuals was used to represent 
the allometric component of shape changes in brain endo-
casts. The first eigenvector is the only one highly correlated 
with the Log volume of the endocasts (r = 0.81). The analy-
sis of autocorrelation for the values of the first eigenvector 
shows positive and high correlations at short distances, indi-
cating that closer semilandmarks will tend to display a simi-
lar magnitude of change along the allometric axis (Fig. 6).

Discussion

Our results show that shape changes in the two discussed 
examples—the comparison of the skull between two species 
of primates and an ontogenetic series of human endocasts—
are spatially structured, i.e. the shape residual are spatially 
autocorrelated. Some regions of both morphological struc-
tures display higher differences in shape than others and 
they tend to be near in terms of their anatomical position. 
We described and quantified this pattern by using methods 
that take into account the position of the shape residuals 
and were able to consider the spatial structure, particularly 
spatial autocorrelation, in statistical analyses applied to 
the study of modularity and allometry. As expected, differ-
ent results were achieved when spatially explicit methods 
were used: in the first example, we found that part of the 
inter-specific variation in the skull that has been previously 
interpreted as evidence of functional modularity (Cheverud 
1996; Lieberman 2011) can emerge by the influence of 
processes with local effects that generate the spatial auto-
correlation observed in shape data; in the second example, 
the spatial regression showed that an important portion of 

Fig. 1   Color-map representing 
the differences (pseudoland-
mark shape residuals) between 
the Saimiri and Alouatta speci-
mens (Color figure online)
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shape changes associated with ontogenetic allometry was 
localized even though a greater effect of global variation 
is expected as a consequence of growth (Durrleman et al. 
2012). Therefore, our findings have implications for both 

the selection of morphometric variables and their posterior 
statistical analyses.

The high autocorrelation observed in the morphomet-
ric data suggests that the sampling design, in terms of 
the type and number of reference points (e.g. landmarks, 

Fig. 2   Spatial correlogram of the residuals between the Saimiri and Alouatta specimens (above) and scatterplot of the shape residual values of 
pseudolandmark for the first distance class (below)
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semilandmarks) digitized on the structure of interest, needs 
to take into account the spatial structure of shape variation, 
particularly when the interest is analyzing global and local 
shape changes as has been previously proposed (Rohlf 1993; 
Mitteroecker 2009). A recommended first step in such stud-
ies is to apply an intensive and non-directed sampling of 
surface points automatically extracted from the 3D meshes 
and then automatically align the structures to measure shape 
differences, such as in the methods proposed by Boyer et al. 
(2015) and Pomidor et al. (2016). The automatic sampling 
of surface points is particularly adequate for detecting areas 
of greater and lesser variation because the strategy of sam-
pling is not biased by a priori assumptions of the observ-
ers (Gonzalez et al. 2016). These methods allow to explore 
the degree of dependence among shape residuals at nearby 
reference points, which can serve as a guide to design the 
sampling of points in a way that regions that are relatively 
independent are evenly represented. Then, one can decide 
whether the use of landmarks, a combination of landmarks 
and semilandmarks or pseudolandmarks is more suitable to 
answer the research questions under study. Additionally, the 
required number of points needed for an adequate assess-
ment of shape variation could be also evaluated as it has 
been recently proposed (Watanabe 2018). The incorporation 

of the spatial information, and particularly the patterns of 
autocorrelation, in such analyses could contribute to improve 
the sampling strategies by applying informed rather than 
random removal of landmarks. In this context, the use of 
too few landmarks will preclude the description of shape 
variation at local scales, since these reference points tend to 
exclude local shape changes and better describe the variation 
at broad (global) spatial scales (Watanabe 2018).

Regarding the implications for statistical analyses, we 
show that different results are attained by using methods 
that incorporates or not the spatial autocorrelation in the 
evaluation of the effect of specific biological factors on 
shape variation. Particularly, these analyses indicate that 
the effect of biological factors acting at local scales can be 
confounded with more systemic factors (by example the 
effect of the diet on the facial skeleton; Cheverud 1996; 
Lieberman 2011) if the spatial autocorrelation is not taken 
into account. For these analyses, we incorporated the spa-
tial autocorrelation structure using a generalized least 
squares technique, but different methods have been pro-
posed in geographical and ecological studies for modeling 
and testing independent factors and taking into account 
the spatial variation, such as partial mantel, trend surface, 
autoregression and spatial eigenvector mapping (Legendre 
and Legendre 1998; Diniz-Filho et al. 2009; Perez et al. 
2010a). These methods present advantages and disadvan-
tages, depending the studied problem, and some of them 
have been criticized previously. By example, methods such 
as partial mantel, trend surface, autoregression and spatial 
eigenvector mapping have been criticized in phylogenetic 
studies (e.g. Rohlf 2001, 2006; Perez et al. 2010b), but the 
last two have shown to be efficient and flexible in spatial 
analyses (Dormann et al. 2007; Diniz-Filho et al. 2009). 
Conversely, there is an agreement that partial mantel and 
trend surface should be used with caution because they 
remove lineal trends or affine spatial variation and can 
eliminate the effect under study (Legendre and Legendre 
1998; Perez et al. 2010b). However, the suitability of these 
methods will depend on the structure of the morphometric 

Fig. 3   K means clustering of the shape residuals of pseudolandmark 
between the Saimiri and Alouatta specimens

Fig. 4   Color-map depicting the 
shape changes in the postnatal 
ontogeny of the human brain 
(Color figure online)
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spaces, such as the affine or non-affine characteristics, 
which might limit the meaningfulness of our biological 
statements (Huttegger and Mitteroecker 2011). In this con-
text, the use of spatial regression techniques such as gen-
eralized least squares, autoregression or spatial eigenvec-
tor mapping have been recommended in spatial analyses 
because they are flexible and useful for modelling spatial 
variation and provide more accurate statistical estimations 

(Dormann et al. 2007; Diniz-Filho et al. 2009; Perez et al. 
2010a, b).

Although we only analyzed two cases to exemplify the 
importance of spatial autocorrelation in morphometric stud-
ies, it is expected that they represent a common pattern if we 
take into account that developmental and functional factors 
can have local and global effects (Hallgrímsson and Lieber-
man 2008; Mitteroecker and Bookstein 2008; Mitteroecker 

Fig. 5   Spatial correlogram of the residuals between the youngest and the oldest specimens (above) and scatterplot of the shape residual values of 
pseudolandmark for the first distance class (below)
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2009). Morphological traits arise during ontogeny under the 
influence of functional and developmental factors occurring 
in a sequential spatiotemporal manner (Hall 2003). Such 
factors can have a systemic effect influencing several traits 
across the organism (such as circulating hormones and 
environmental influences) or local effects on a subset of 
traits (such as locally expressed molecules with autocrine 
or paracrine actions and local tissue interactions) (Parker 
2011). Additionally, closer traits tend to interact with each 
other and with their local surrounding environments being 
influenced by several common local process (Mitteroecker 
and Bookstein 2007). In consequence, characteristic pat-
terns of variation and covariation in shape at different spatial 
scales within the anatomical structure studied are expected 
to emerge along individual ontogeny and evolve through-
out generations. Therefore, the spatial variation need to be 
modeled and systematically incorporated in the statistical 
analysis of morphometric variation.

Overall, our results suggest that the approach presented 
here, which it is based on the intensive description of 
shape differences between structures using densely sam-
pled points on 3D surfaces and employing spatial statis-
tical methods to describe the pattern of differences and 
test biological hypotheses, can be used to explore several 
problems not widely addressed previously in modern mor-
phological studies. The equipment for image acquisition, 
such as CTs and surface scanners, that allow for the acqui-
sition and publication of 3D digital images (Davies et al. 
2017), as well as the generation of high dimensional mor-
phometric datasets (Gunz and Mitteroecker 2013; Pomi-
dor et al. 2016), open new avenues to explore the shape 
variation beyond the use of landmark-based morphometric 
methods. However, whether landmarks or densely sampled 
points are used will depend on the research questions; if 

the interest is the study of specific anatomical regions or 
global shape characteristics, the use of a few anatomical 
points could be more adequate (Pomidor et al. 2016).

Finally, it is important to remark that more work is needed 
to explore which spatial regression techniques would be the 
most suitable for morphometric studies. The techniques used 
here are not new in evolutionary biology and macro-ecol-
ogy (Dormann et al. 2007; Bini et al. 2009), but they have 
not been applied to morphometric data before. In addition, 
approaches based on principal components or factor analy-
sis that have been successfully applied to take into account 
the phylogenetic structure in the data (Revell 2009; Tolkoff 
et al. 2017) could be also used to explore the variation in 
morphometric data at different spatial scales (Bookstein 
2017). Within geometric morphometrics, we need to con-
sider the characteristics of the shape space, because different 
approaches might be suited to morphometric residuals ana-
lyzed in the Tangent/Euclidean space or in the Procrustes/
Kendall one. Techniques such as generalized least squares, 
autoregression or spatial eigenvector mapping are adequate 
for exploring and testing variation in the Euclidean space, 
although they have also been employed using spherical 
space, such as the Earth coordinates. Conversely, the phy-
logenetic eigenvector regression (PVR, Diniz-Filho et al. 
1998) method, a phylogenetic version of the spatial eigen-
vector mapping has shown strong problems to work with 
the patristic phylogenetic spaces (Rohlf 2001). In this sense, 
we need to better explore the behavior of this methods in a 
non-Euclidean space, like Procrustes, where the spatial prop-
erties are more complex. In our view, because spatial auto-
correlation and regression techniques are flexible enough 
and could contribute to add new information, they should 
be incorporated to the geometric morphometric tool-kit 

Fig. 6   Spatial autocorrelation for the values of the first eigenvector representing allometric changes
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(Mitteroecker and Gunz 2009), particularly to explore mor-
phometric changes occurring at different spatial scales.
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