Repositorio Digital

Machine learning for filtering out false positive grey matter atrophies in single subject voxel based morphometry: A simulation based study

Mostrar el registro sencillo del ítem

dc.contributor.author C. Külsgaard, Hernán
dc.contributor.author I. Orlando, José
dc.contributor.author Bendersky, Mariana
dc.contributor.author Princich, Juan P.
dc.contributor.author Luis S.R., Manzanera
dc.contributor.author Vargas, Alberto
dc.contributor.author Kochen, Silvia
dc.contributor.author Larrabide, Ignacio
dc.date.accessioned 2023-03-27T11:29:53Z
dc.date.available 2023-03-27T11:29:53Z
dc.date.issued 2020-11-05
dc.identifier.other https://doi.org/10.1016/j.jns.2020.117220
dc.identifier.uri http://repositorio.hospitalelcruce.org/xmlui/handle/123456789/1347
dc.description Fil: C. Külsgaard, Hernán Pladema Institute - UNICEN/CONICET, Tandil. Buenos Aires; Argentina es
dc.description Fil: I. Orlando, José Pladema Institute - UNICEN/CONICET, Tandil. Buenos Aires; Argentina es
dc.description Fil: Bendersky, Mariana ENyS - UNAJ/CONICET, Florencio Varela. Buenos Aires; Argentina es
dc.description Fil: Princich, Juan P. ENyS - UNAJ/CONICET, Florencio Varela. Buenos Aires; Argentina es
dc.description Fil: Luis S.R., Manzanera Hospital Clinic. Barcelona; Spain es
dc.description Fil: Vargas, Alberto Hospital Clinic. Barcelona; Spain es
dc.description Fil: Kochen, Silvia ENyS - UNAJ/CONICET, Florencio Varela. Buenos Aires; Argentina es
dc.description Fil: Larrabide, Ignacio Pladema Institute - UNICEN/CONICET, Tandil. Buenos Aires; Argentina es
dc.description.abstract Single subject VBM (SS-VBM), has been used as an alternative tool to standard VBM for single case studies. However, it has the disadvantage of producing an excessively large number of false positive detections. In this study we propose a machine learning technique widely used for automated data classification, namely Support Vector Machine (SVM), to refine the findings produced by SS-VBM. A controlled set of experiments was conducted to evaluate the proposed approach using three-dimensional T1 MRI scans from control subjects collected from the publicly available IXI dataset. The scans were artificially atrophied at different locations and with different sizes to mimic the behavior of neurological disorders. Results empirically demonstrated that the proposed method is able to significantly reduce the amount of false positive clusters (p < 0.05), with no statistical differences in the true positive findings (p > 0.05). This evidence was observed to be consistent for different atrophied areas and sizes of atrophies. This approach could be potentially be applied to alleviate the intensive manual analysis that radiologists and clinicians have to perform to filter out miss-detections of SS-VBM, increasing its usability for image reading. es_AR
dc.language.iso en es_AR
dc.subject Muscular Atrophies es_AR
dc.subject Multisystem Atrophies es_AR
dc.subject Brain Disorders es_AR
dc.title Machine learning for filtering out false positive grey matter atrophies in single subject voxel based morphometry: A simulation based study es_AR
dc.type Article es_AR


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem